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CAESAR Server (Black-Box)
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CAESAR Server (White-Box)
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• We have implemented the current server and deployed it to two projects
– It meets 100% of the functional and performance needs for those projects

• We are evolving the design to scale with
– Number of deployments
– Number of projects served per deployment
– Number of users per project
– Number of disciplines/applications supported
– Other dimensions that are captured in a demand model (in the backup)

• We are also evolving the design to improve maintainability
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Current Server Design and Change Motivation



• Step 1: Validate New Design
– Trades and proof-of concept demo (done)
– Document and review new design approach (this presentation)

• Step 2: Develop Minimum Viable Product
– Implement feature parity with current server 
– Deploy to production 
– Retire current server (at the earliest opportunity)

• Step 3: Develop New features
– This work is to be planned as part of our agile process going forward
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New Design Strategy



• Functional
– Integration Workflow
– Analysis & Reporting
– Configuration Management

• Under the Hood
– Service Architecture
– Service Implementation
– Service Orchestration
– Service Deployment
– Service Security
– Managed Services
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Server Design Changes



Integration Workflow

• Integration workflow consists of black-box tasks
– Configured by (pre-commit, post-commit) scripts
– Provenance recorded ad-hoc by scripts
– Published data not configuration managed
– Published data loaded to Jena repository

• Integration workflow is a DAG of primitive processes
– Explicit topology of (adapt, transform, publish)
– Provenance recorded in Git by execution engine
– Published data C/Med in Git as well
– Published data loaded to a SPARQL endpoint



Analysis and Reporting

• Analysis and reporting concerns are mixed in report template
– Implicit analysis topology in the data flow in the template
– Traceability between analysis and report is coarse grained 

• Reports are published but not CM’ed
• Reports are viewed through stateful full-fledged servers

• Analysis is specified as a DAG of primitive ops
– Explicit analysis topology (map, reduce, report)
– Traceability between analysis and report is fine grained

• Reports are CM’ed in Git
• Reports are viewed with stateless light-weight viewers



Configuration / Change Management

• Current workflow is opaque
(hidden in report template)

• No provenance available for reports

• Change impact analysis is expensive
(error-prone visual comparison of reports)

• New workflow DAG is transparent

• Provenance metadata is stored in Git

• Change impact analysis is fine grained and 
cheap to calculate



Current CAESAR Server (Deployment)

Some Statistics:
• 5 projects 
• > 350 tasks executions
• > 5,000 generated reports

Two deployments:
- Production 

(EC2 = imce-infr-dev-01)

- Development
(EC2 = imce-infr-dev-02)



Service Architecture

12

• monolith server architecture • micro-services architecture using the 
open source Lagom Framework

CAESAR 
Server



• Current monolith service stores its state in DB
• New micro-services use two patterns:

– Event Sourcing (ES)
– application events persist in DB
– state is derived from events

– Command/Query Responsibility Segregation (CQRS)
• Distinguish two kinds of operations w.r.t. effects on state

– A command operation depends on current state and affects it
– A query operation depends on current state but does not modify it

• ES + CQRS allows separating 
– reads (queries)

• Query processors can be replicated to handle potentially 
spikes of demand

• Great for elasticity!
– writes (commands)

• Command processors need to deal with concurrency, 
transactions, failures, ....

Service Implementation
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• CAESAR batch jobs (processes) are dockerized and 
orchestrated with Kubernetes

• Kubernetes helps CAESAR maintain a vendor-neutral 
strategy with a very high level of inteoperability with multiple 
cloud vendors, including Amazon Web Services

Service Orchestration

• CAESAR batch Jobs (integration tasks) are 
orchestrated directly using Jenkins CI



Service Deployment
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• CAESAR services (and third party dependencies) are 
dockerized and deployed using Kubernetes on a cluster 
of nodes (in the cloud or on-premise)

• The deployment is configuration managed in Git and 
automated using WeaveFlux

• Easily reproducible CAESAR deployments
• Facilitate experimenting with alternate Kubernetes 

environments (OCIO, AWS EKS, ...)
• Simplify deployment documentation

• CAESAR services (and third party 
dependencies) are deployed manually 
and on a single node



Service Security
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• OpenID/Connect Authentication with Keycloak
• LDAP as an ID provider
• No authorization
• Individual services handle authentication 

individually
• Private user data is exposed to CAESAR 

services (via JWT tokens)

• Project-specific role-based and/or attribute-based 
authorization via CSAESAR realms in Keycloak

• Authorization API Gateway abstracts Keycloak
interface and enforces strict security & access control 
compliance

• All external & internal APIs are reverse proxied 
through the Authorization API gateway

• No private user data is exposed to CAESAR services



Managed Cloud Services
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• New design can leverage cloud-based managed services, ex.:
• AWS RDS as a relational database
• AWS Neptune as a SPARQL endpoint
• AWS EKS as a Kubernetes endpoint
• AWS EMR as a Jupyter Notebook service


